
__

"Мировая наука" №8 (77) 2023 science-j.com

Oganesyan Artem

Member of the itSMF association

Russia, Moscow

Theme: ANALYSIS AND COMPARISON OF CRUD OPERATIONS

PERFORMANCE OF RELATIONAL AND NOSQL DATABASES

Annotation: Despite the fact that NoSQL systems have existed for quite a long time,

today there are relatively few studies on the topic of comparing their performance with

relational systems. The available works often do not allow us to get a complete picture,

because either they describe experiments of a narrow focus (for example, comparing time

spent only on data insertion operations), or they have specialized and rarely used DBMS as

research objects.

As part of this work, it is proposed to consider the fairly well-known PostgreSQL

and MongoDB.

Keywords: DBMS, PostgreSQL, MongoDB, efficiency

To date, it is safe to say that the process of informatization concerns all spheres of

human activity, which means that certain information repositories are used almost

everywhere.

A relational database is a set of interconnected tables, each of which contains

information about objects of a certain type. Each row of the table contains data about one

object (for example, a car, a computer, a client), and the columns of the table contain

various characteristics of these objects - attributes (for example, engine number, processor

brand, phone numbers of companies or customers).

As part of this work, the "online store-warehouse" structure is organized for the

PostgreSQL DBMS (figure 1).

__

"Мировая наука" №8 (77) 2023 science-j.com

Figure 1– ER database diagram for PostgreSQL

As for MongoDB, it is a non-relational database, which means it is

impossible to build arbitrary queries based on the available data. This problem is

solved, as a rule, in two ways. The first of them consists in designing collections in

the manner of tables from relational databases. The connection itself is carried out

within the framework of the application. The second method is related to data

denormalization. By placing, for example, the t_address collection inside the t_user

collection (while leaving a separate copy of the t_address table), you can provide

the possibility of pre-organizing join requests for these entities. This approach,

however, is associated with very serious difficulties in ensuring data consistency,

because changes that have occurred with a specific record in one collection must

occur in all copies. Thus, one should be extremely careful when implementing

"pre-join" and take into account the difficulties associated with it when analyzing

the experiments described in this paper.

A personal computer with the following characteristics was used as a

workstation:

• Operating system: Windows 10;

• processor: Intel Core i7 2.6 GHz;

__

"Мировая наука" №8 (77) 2023 science-j.com

Insert
160

140

120

100

80

60

40

20

0

Amount of rows

• RAM: 8 GB.

PostgreSQL version is 9.6.1, MongoDB version is 3.4.2. An Internet service was

used to generate data [9]. Each experiment was conducted for 10000; 100,000; 500,000;

1 000,000; 2,000,000 and 5,000,000 records with calculation of the average execution time

for thirty attempts. Calculations and construction of histograms were carried out in the

Microsoft Excel software product. To measure the execution time in PostgreSQL, the

/timing directive was used, in MongoDB, methods of profiling the operation log were

used, using the explain() method where possible, as well as placing timestamps with

subsequent calculation of the difference between their values.

It is worth noting that the MongoDB internal query analyzer has an accuracy of 1 ms,

so when conducting experiments with a small amount of data, it will not be possible to get

accurate information about the query execution time.

MongoDB

PostgreSQL

10K 100K 500K 1M 2M 5M

MongoDB 0,21700 1,99827 10,87564 25,40014 49,01154 148,13567

PostgreSQL 0,00378 1,11754 4,51324 11,98754 25,98654 75,11024

Figure 2– Comparison of insertion operation execution time

In the experiment on inserting records, the t_item entity was used, storing rows of the

form:

__

"Мировая наука" №8 (77) 2023 science-j.com

Update
120

100

80

60

40

20

0

Amount of rows

Q
u

e
ry

 x
e

cu
ti

o
n

 t
im

e
 (

se
co

n
d

s)

Table 1 – Example of a row from the t_item table.

item_id
(integer)

item_name
varchar(30)

item_model
varchar(30)

item_weight
float

item_price
float

item_desc
text

1
vitae

consectetuer

adipiscing

51,886

9869,215
ante ipsum

primis in
faucibus

The data update experiment was carried out within the t_address table, the zip

numeric field (zip code) was changed[1,3]

MongoDB

PostgreSQL

10K 100K 500K 1M 2M 5M

MongoDB 0,14897 2,01254 11,11547 22,11425 43,15248 112,59865

PostgreSQL 0,03010 0,49857 4,58762 14,01389 24,98564 64,15487

Figure 3– Comparison of the execution time of update operations

__

"Мировая наука" №8 (77) 2023 science-j.com

Select with and without B-tree index (1% of
rows)

3

2,5

2

1,5

1

0,5

0

MongoDB (Index)

MongoDB (No index)

PostgreSQL (Index)

PostgreSQL (No index)

Amount of rows

Figure 4– Comparison of the execution time of sampling operations with an

index and without using an index

For experiments with the sampling operation, the following scenario was used: the

execution time of operations with the sampling condition for the same records with the

presence of an index based on the binary search tree and without it was measured. The

condition for the item_price field of the float type was used. One percent of the records

satisfied the search expression[2]

The following are the results of experiments with the selection operation with table

attachment (t_user and t_address by the user_address_id and address_id fields,

respectively).

 Q
u

10K 100K 500K 1M 2M 5M

MongoDB (Index) 0,00123 0,00198 0,01598 0,03612 0,05689 0,15101

MongoDB (No index) 0,00595 0,05487 0,27114 0,54587 1,09356 2,51298

PostgreSQL (Index) 0,00098 0,00398 0,01821 0,03654 0,06711 0,39986

PostgreSQL (No index) 0,00198 0,01499 0,07211 0,18958 0,48117 1,20014

e
ry

 x
e

cu
ti

o
n

 t
im

e
 (

se
co

n
d

s)

__

"Мировая наука" №8 (77) 2023 science-j.com

Join
250

200

150

100

50

0

Amount of rows

MongoDB
($lookup)
MongoDB

PostgreSQL

10K 100K 500K 1M 2M 5M

MongoDB ($lookup) 0,36998 3,84412 17,89625 36,88365 75,15987 228,77214

MongoDB 0,00215 0,02698 0,11098 0,21996 0,50112 1,04985

PostgreSQL 0,04325 0,42987 2,24995 4,79898 11,75994 28,22934

Figure 5– Comparison of the execution time of data attachment operations

As already mentioned above, today under the word

NoSQL is understood not by those DBMSs that are managed using a language that

does not belong to the SQL standard, but rather by those that are not relational. It is all the

more surprising to see that in the MongoDB version -3.2 – the developer company has

provided the opportunity to organize connections by common fields of the table [1]. The

connection command looks like this:

db.t_user.aggregate([{$lookup:{

from: "t_address",

localField: "user_address_id",

foreignField: "address_id",

as: "find_address"}}]),

where from is the name of the external collection, localField is the attachment field

from the collection in question, foreignField is the attachment field from the external

collection, as – alias is the name for the resulting attachment of records.

At the moment, it is possible to join only one field and only in the left outer join

format. Thus, based on the existing limitations and time characteristics of the execution of

__

"Мировая наука" №8 (77) 2023 science-j.com

Group by city
7

6

5

4

3

2

1

0

Amount of rows

this query, when organizing table joins in the selected NoSQL solution, other methods

should be used.

MongoDB

PostgreSQL

10K 100K 500K 1M 2M 5M

MongoDB 0,01598 0,10965 0,47985 1,16521 2,36547 6,14852

PostgreSQL 0,00698 0,034587 0,16001 0,29990 0,6112 1,58112

Figure 6– Comparison of the execution time of data grouping operations

This experiment is based on a query calculating how many resource users represent a

particular city (based on the t_address table; sort the result in descending order of the

aggregating function)[4]

The last experiment in this chapter is related to finding the maximum value of the

item_price field in the t_item table.

__

"Мировая наука" №8 (77) 2023 science-j.com

Max(item_price)
5

4,5

4

3,5

3

2,5

2

1,5

1

0,5

0

Amount of rows

 MongoDB

PostgreSQL

10K 100K 500K 1M 2M 5M

MongoDB 0,01312 0,10001 0,46987 0,885114 1,88110 4,66528

PostgreSQL 0,00209 0,01532 0,09911 0,16001 0,40021 1,00881

Figure 7–Comparison of the execution time of the maximum value search

operations

Thus, experiments show the advantage of PostgreSQL in all tasks except

indexed search. As for the joining operation, the decision on data denormalization

for NoSQL DBMS directly depends on the specific task, taking into account the

costs of maintaining consistency and storing redundant information.

List:

1. Release Notes for MongoDB 3.2 – MongoDB Manual 3.2

[Электронный ресурс]. URL: https://docs.mongodb.org/manual/release-

notes/3.2/#aggregation- framework-enhancements

2. Rick Cattell. Scalable SQL and NoSQL data stores. ACM SIGMOD

Record, Volume 39 Issue 4, December 2010. – NY: ACM New York. – p.12-27

3. Parker Z., Poe S., Vrbsky S. Comparing NoSQL MongoDB to an SQL

DB, Proceedings of the 51st ACM Southeast Conference. – NY: ACM New

York, 2013. – 6 p.

4. Daniel J. Abadi, Peter A. Boncz, Stavros Harizopoulos. Column-

oriented database systems. Proceedings of the VLDB Endowment, Volume 2 Issue

2, August 2009 (pages 1664-1665).

https://docs.mongodb.org/manual/release-notes/3.2/%23aggregation-framework-enhancements
https://docs.mongodb.org/manual/release-notes/3.2/%23aggregation-framework-enhancements
https://docs.mongodb.org/manual/release-notes/3.2/%23aggregation-framework-enhancements

